Class Ed25519LittleEndianEncoding

java.lang.Object
net.i2p.crypto.eddsa.math.Encoding
net.i2p.crypto.eddsa.math.ed25519.Ed25519LittleEndianEncoding
All Implemented Interfaces:
Serializable

public class Ed25519LittleEndianEncoding extends Encoding
Helper class for encoding/decoding from/to the 32 byte representation.

Reviewed/commented by Bloody Rookie (nemproject@gmx.de)

See Also:
  • Constructor Details

    • Ed25519LittleEndianEncoding

      public Ed25519LittleEndianEncoding()
  • Method Details

    • encode

      public byte[] encode(FieldElement x)
      Encodes a given field element in its 32 byte representation. This is done in two steps:
      1. Reduce the value of the field element modulo $p$.
      2. Convert the field element to the 32 byte representation.

      The idea for the modulo $p$ reduction algorithm is as follows:

      Assumption:

      • $p = 2^{255} - 19$
      • $h = h_0 + 2^{25} * h_1 + 2^{(26+25)} * h_2 + \dots + 2^{230} * h_9$ where $0 \le |h_i| \lt 2^{27}$ for all $i=0,\dots,9$.
      • $h \cong r \mod p$, i.e. $h = r + q * p$ for some suitable $0 \le r \lt p$ and an integer $q$.

      Then $q = [2^{-255} * (h + 19 * 2^{-25} * h_9 + 1/2)]$ where $[x] = floor(x)$.

      Proof:

      We begin with some very raw estimation for the bounds of some expressions:

      $$ \begin{equation} |h| \lt 2^{230} * 2^{30} = 2^{260} \Rightarrow |r + q * p| \lt 2^{260} \Rightarrow |q| \lt 2^{10}. \\ \Rightarrow -1/4 \le a := 19^2 * 2^{-255} * q \lt 1/4. \\ |h - 2^{230} * h_9| = |h_0 + \dots + 2^{204} * h_8| \lt 2^{204} * 2^{30} = 2^{234}. \\ \Rightarrow -1/4 \le b := 19 * 2^{-255} * (h - 2^{230} * h_9) \lt 1/4 \end{equation} $$

      Therefore $0 \lt 1/2 - a - b \lt 1$.

      Set $x := r + 19 * 2^{-255} * r + 1/2 - a - b$. Then:

      $$ 0 \le x \lt 255 - 20 + 19 + 1 = 2^{255} \\ \Rightarrow 0 \le 2^{-255} * x \lt 1. $$

      Since $q$ is an integer we have

      $$ [q + 2^{-255} * x] = q \quad (1) $$

      Have a closer look at $x$:

      $$ \begin{align} x &= h - q * (2^{255} - 19) + 19 * 2^{-255} * (h - q * (2^{255} - 19)) + 1/2 - 19^2 * 2^{-255} * q - 19 * 2^{-255} * (h - 2^{230} * h_9) \\ &= h - q * 2^{255} + 19 * q + 19 * 2^{-255} * h - 19 * q + 19^2 * 2^{-255} * q + 1/2 - 19^2 * 2^{-255} * q - 19 * 2^{-255} * h + 19 * 2^{-25} * h_9 \\ &= h + 19 * 2^{-25} * h_9 + 1/2 - q^{255}. \end{align} $$

      Inserting the expression for $x$ into $(1)$ we get the desired expression for $q$.

      Specified by:
      encode in class Encoding
      Parameters:
      x - the FieldElement to encode
      Returns:
      the $(b-1)$-bit encoding of this FieldElement.
    • load_3

      static int load_3(byte[] in, int offset)
    • load_4

      static long load_4(byte[] in, int offset)
    • decode

      public FieldElement decode(byte[] in)
      Decodes a given field element in its 10 byte $2^{25.5}$ representation.
      Specified by:
      decode in class Encoding
      Parameters:
      in - The 32 byte representation.
      Returns:
      The field element in its $2^{25.5}$ bit representation.
    • isNegative

      public boolean isNegative(FieldElement x)
      Is the FieldElement negative in this encoding?

      Return true if $x$ is in $\{1,3,5,\dots,q-2\}$
      Return false if $x$ is in $\{0,2,4,\dots,q-1\}$

      Preconditions:

      • $|x|$ bounded by $1.1*2^{26},1.1*2^{25},1.1*2^{26},1.1*2^{25}$, etc.
      Specified by:
      isNegative in class Encoding
      Parameters:
      x - the FieldElement to check
      Returns:
      true if $x$ is in $\{1,3,5,\dots,q-2\}$, false otherwise.