Live manual

Live Systems


<< previous toc next >>

Podręcznik Systemów Live

O tym podręczniku

O tym podręczniku

1. O tym podręczniku

1.1 Dla niecierpliwych
1.2 Definicje
1.3 Autorzy
1.4 Wnoszenie wkładu do tego dokumentu
1.4.1 Nanoszenie zmian
1.4.2 Tłumaczenie

O Live Systems Project

2. O Live Systems Project

2.1 Motywacja
2.1.1 Co jest nie tak w moim dotychczasowym systemie live?
2.1.2 Czemu tworzyć nasz własny system live?
2.2 Filozofia
2.2.1 Tylko niezmienione pakiety z działu Debian "main"
2.2.2 Bez konfiguracji pakietów systemu live
2.3 Kontakt

Użytkownik

Instalacja

3. Instalacja

3.1 Wymagania
3.2 Instalowanie live-build
3.2.1 Z repozytorium Debiana
3.2.2 Ze źródła
3.2.3 Ze zrzutów deweloperskich
3.3 Instalowanie live-boot i live-config
3.3.1 Z repozytorium Debiana
3.3.2 Ze źródła
3.3.3 Ze zrzutów deweloperskich

Podstawy

4. Podstawy

4.1 Co to jest system live?
4.2 Pobieranie prekompilowanych obrazów
4.3 Using the web live image builder
4.3.1 Używanie i przestrogi dotyczące Web buildera
4.4 Pierwsze kroki: budowanie obrazu ISO-hybrydy
4.5 Korzystanie z hybrydowego obrazu ISO live
4.5.1 Wypalanie obrazu ISO na fizycznym nośniku
4.5.2 Kopiowanie obrazu ISO-hybrydy na nośnik USB
4.5.3 Wykorzystanie przestrzeni pozostałej na nośniku USB
4.5.4 Uruchamianie nośnika live
4.6 Używanie wirtualnej maszyny do testowania
4.6.1 Testowanie obrazu ISO z użyciem QEMU
4.6.2 Testowanie obrazu ISO z użyciem VirtualBox'a
4.7 Budowanie i używanie obrazu HDD
4.8 Budowanie obrazu netboot
4.8.1 Serwer DHCP
4.8.2 Serwer TFTP
4.8.3 Serwer NFS
4.8.4 Netboot testing HowTo
4.8.5 Qemu
4.9 Webbooting
4.9.1 Getting the webboot files
4.9.2 Uruchamianie obrazów webboot

Przegląd narzędzi

5. Przegląd narzędzi

5.1 Pakiet live-build
5.1.1 Polecenie lb config
5.2 Wcięcia
5.2.1 Polecenie lb build
5.2.2 Polecenie lb clean
5.3 Pakiet live-boot
5.4 Pakiet live-config

Zarządzanie konfiguracją

6. Zarządzanie konfiguracją

6.1 Radzenie sobie ze zmianami konfiguracji
6.1.1 Czemu używać automatycznych skryptów? Co one robią?
6.1.2 Użyj przykładowych automatycznych skryptów
6.2 Klonowanie konfiguracji opublikowanej przez Git

Dostosowywanie zawartości

7. Opis dostosowywania

7.1 Konfiguracja podczas kompilacji vs. podczas uruchamiania systemu
7.2 Etapy kompilacji
7.3 Uzupełnienie lb config plikami
7.4 Zadania dostosowywania

Dostosowywanie instalacji pakietów

8. Dostosowywanie instalacji pakietów

8.1 Źródła pakietu
8.1.1 Dystrybucja, działy archiwum i tryb
8.1.2 Serwery lustrzane dystrybucji
8.1.3 Serwery lustrzane dystrybucji używane podczas budowania obrazu
8.1.4 Serwery lustrzane dystrybucji użyte podczas uruchomienia
8.1.5 Dodatkowe repozytoria
8.2 Wybieranie pakietów do instalacji
8.2.1 Lista pakietów
8.2.2 Używanie metapakietów
8.2.3 Lokalna lista pakietów
8.2.4 Lokalna lista pakietów binarnych
8.2.5 Wygenerowana lista pakietów
8.2.6 Używanie instrukcji warunkowych w listach pakietów.
8.2.7 Usuwanie pakietu podczas instalacji
8.2.8 Pulpit i zadania językowe
8.2.9 Rodzaj jądra i wersja
8.2.10 Niestandardowe jądra
8.3 Instalowanie zmodyfikowanych pakietów lub pakietów innych firm
8.3.1 Używanie packages.chrootdo instalacji niestandardowych pakietów
8.3.2 Używanie repozytoriium APT aby zainstalować niestandarkowe pakiety
8.3.3 Niestandardowe pakiety i APT
8.4 Konfigurowanie APT podczas kompilacji
8.4.1 Wybieranie apt lub aptitude
8.4.2 Używanie serwera proxy z APT
8.4.3 Podkręcanie APT celu zaoszczędzenia miejsca
8.4.4 Przekazywanie opcji do apt lub aptitude
8.4.5 Pinning APT

Dostosowywanie zawartości

9. Dostosowywanie zawartości

9.1 Uwzględnianie
9.1.1 Lokalnie uwzględniane w chroot/live
9.1.2 Lokalnie uwzględniane dane binarne
9.2 Haki
9.2.1 Lokalne haki chroot/live
9.2.2 Haki podczas uruchamiania
9.2.3 Lokalne haki binarne
9.3 Wstępne ustawienie pytań Debconfa (Preseeding)

Dostosowywanie zdarzeń podczas uruchamiania systemu

10. Dostosowywanie zdarzeń podczas uruchamiania systemu

10.1 Personalizacja użytkownika live
10.2 Ustawianie lokalizacji i języka
10.3 Persistence
10.3.1 Plik persistence.conf
10.3.2 Używanie więcej niż jednego magazynu persistence
10.3.3 Using persistence with encryption

Dostosowywanie obrazu binarnego

11. Dostosowywanie obrazu binarnego

11.1 Programy ładujące (ang. Bootloadery)
11.2 Metadane ISO

Dostosowywanie Instalatora Debiana

12. Dostosowywanie Instalatora Debiana

12.1 Typy Instalatora Debiana
12.2 Dostosowywanie Instalatora Debiana przez preseeding
12.3 Dostosowywanie zawartości Instalatora Debiana

Projekt

Wnoszenie wkładu do tego projektu

13. Wnoszenie wkładu do tego projektu

13.1 Wprowadzanie zmian

Zgłaszanie błędów

14. Zgłaszanie błędów

14.1 Znane problemy
14.2 Przebuduj od zera
14.3 Używaj aktualnych pakietów
14.4 Zbierz potrzebne informacje
14.5 Wyizoluj prawdopodobną wadę, jeśli to możliwe
14.6 Wybierz odpowiedni pakiet dla którego zgłaszasz błąd
14.6.1 W czasie budowania podczas ładowania początkowego (bootstrapping)
14.6.2 W czasie budowania podczas instalacji pakietów
14.6.3 W czasie uruchamiania
14.6.4 W czasie gdy system jest już uruchomiony
14.7 Spróbuj wykonać parę kroków
14.8 Gdzie zgłaszać błędy

Styl Kodowania

15. Styl Kodowania

15.1 Kompatybilność
15.2 Wcięcia
15.3 Zawijanie
15.4 Zmienne
15.5 Różne

Procedury

16. Procedury

16.1 Główne wydanie
16.2 Wydanie Docelowe
16.2.1 Ostatnie Wydanie Docelowe Debiana
16.2.2 Szablon obwieszczenia dla wydania docelowego

Repozytorium Git

17. Repozytorium Git

17.1 Obsługa wielu repozytoriów

Przykłady

Przykłady

18. Przykłady

18.1 Używanie przykładów
18.2 Samouczek 1: Domyślny obraz
18.3 Samouczek 2: Narzędzie przeglądarka
18.4 Samouczek 3: Spersonalizowany obraz
18.4.1 Pierwsza zmiana
18.4.2 Druga zmiana
18.5 Kiosk-klient serwera VNC
18.6 Bazowy obraz dla nośnika USB z 128MB pamięci.
18.7 Pulpit GNOME w lokalnym języku oraz instalator

Dodatek

Przewodnik redakcyjny

19. Przewodnik redakcyjny

19.1 Wytyczne dla autorów
19.1.1 Funkcje językowe
19.1.2 Procedury
19.2 Wytyczne dla tłumaczy
19.2.1 Wskazówki tłumaczenia

Metadata

SiSU Metadata, document information

Podręcznik Systemów Live

Podstawy

4. Podstawy

This chapter contains a brief overview of the build process and instructions for using the three most commonly used image types. The most versatile image type, iso-hybrid, may be used on a virtual machine, optical medium or USB portable storage device. In certain special cases, as explained later, the hdd type may be more suitable. The chapter includes detailed instructions for building and using a netboot type image, which is a bit more involved due to the setup required on the server. This is an slightly advanced topic for anyone who is not already familiar with netbooting, but it is included here because once the setup is done, it is a very convenient way to test and deploy images for booting on the local network without the hassle of dealing with image media.

The section finishes with a quick introduction to webbooting which is, perhaps, the easiest way of using different images for different purposes, switching from one to the other as needed using the internet as a means.

Throughout the chapter, we will often refer to the default filenames produced by live-build. If you are downloading a prebuilt image instead, the actual filenames may vary.

4.1 Co to jest system live?

A live system usually means an operating system booted on a computer from a removable medium, such as a CD-ROM or USB stick, or from a network, ready to use without any installation on the usual drive(s), with auto-configuration done at run time (see Terms).

With live systems, it's an operating system, built for one of the supported architectures (currently amd64 and i386). It is made from the following parts:

You can use live-build to build the system image from your specifications, set up a Linux kernel, its initrd, and a bootloader to run them, all in one medium-dependant format (ISO9660 image, disk image, etc.).

4.2 Pobieranie prekompilowanych obrazów

While the focus of this manual is developing and building your own live images, you may simply wish to try one of our prebuilt images, either as an introduction to their use or instead of building your own. These images are built using our live-images git repository and official stable releases are published at ‹https://www.debian.org/CD/live/›. In addition, older and upcoming releases, and unofficial images containing non-free firmware and drivers are available at ‹http://live-systems.org/cdimage/release/›.

4.3 Using the web live image builder

As a service to the community, we run a web-based live image builder service at ‹http://live-systems.org/build/›. This site is maintained on a best effort basis. That is, although we strive to keep it up-to-date and operational at all times, and do issue notices for significant operational outages, we cannot guarantee 100% availability or fast image building, and the service may occasionally have issues that take some time to resolve. If you have problems or questions about the service, please contact us, providing us with the link to your build.

4.3.1 Używanie i przestrogi dotyczące Web buildera

The web interface currently makes no provision to prevent the use of invalid combinations of options, and in particular, where changing an option would normally (i.e. using live-build directly) change defaults of other options listed in the web form, the web builder does not change these defaults. Most notably, if you change --architectures from the default i386 to amd64, you must change the corresponding option --linux-flavours from the default 586 to amd64. See the lb_config man page for the version of live-build installed on the web builder for more details. The version number of live-build is listed at the bottom of the web builder page.

The time estimate given by the web builder is a crude estimate only and may not reflect how long your build actually takes. Nor is the estimate updated once it is displayed. Please be patient. Do not refresh the page you land on after submitting the build, as this will resubmit a new build with the same parameters. You should contact us if you don't receive notification of your build only once you are certain you've waited long enough and verified the notification e-mail did not get caught by your own e-mail spam filter.

The web builder is limited in the kinds of images it can build. This keeps it simple and efficient to use and maintain. If you would like to make customizations that are not provided for by the web interface, the rest of this manual explains how to build your own images using live-build.

4.4 Pierwsze kroki: budowanie obrazu ISO-hybrydy

Regardless of the image type, you will need to perform the same basic steps to build an image each time. As a first example, create a build directory, change to that directory and then execute the following sequence of live-build commands to create a basic ISO hybrid image containing a default live system without X.org. It is suitable for burning to CD or DVD media, and also to copy onto a USB stick.

The name of the working directory is absolutely up to you, but if you take a look at the examples used throughout live-manual, it is a good idea to use a name that helps you identify the image you are working with in each directory, especially if you are working or experimenting with different image types. In this case you are going to build a default system so let's call it, for example, live-default.

$ mkdir live-default && cd live-default

Then, run the lb config command. This will create a "config/" hierarchy in the current directory for use by other commands:

$ lb config

No parameters are passed to these commands, so defaults for all of their various options will be used. See The lb config command for more details.

Now that the "config/" hierarchy exists, build the image with the lb build command:

# lb build

This process can take a while, depending on the speed of your computer and your network connection. When it is complete, there should be a live-image-i386.hybrid.iso image file, ready to use, in the current directory.

Note: If you are building on an amd64 system the name of the resulting image will be live-image-amd64.hybrid.iso. Keep in mind this naming convention throughout the manual.

4.5 Korzystanie z hybrydowego obrazu ISO live

After either building or downloading an ISO hybrid image, which can be obtained at ‹https://www.debian.org/CD/live/›, the usual next step is to prepare your medium for booting, either CD-R(W) or DVD-R(W) optical media or a USB stick.

4.5.1 Wypalanie obrazu ISO na fizycznym nośniku

Burning an ISO image is easy. Just install xorriso and use it from the command-line to burn the image. For instance:

# apt-get install xorriso
$ xorriso -as cdrecord -v dev=/dev/sr0 blank=as_needed live-image-i386.hybrid.iso

4.5.2 Kopiowanie obrazu ISO-hybrydy na nośnik USB

ISO images prepared with xorriso, can be simply copied to a USB stick with the cp program or an equivalent. Plug in a USB stick with a size large enough for your image file and determine which device it is, which we hereafter refer to as ${USBSTICK}. This is the device file of your key, such as /dev/sdb, not a partition, such as /dev/sdb1! You can find the right device name by looking in dmesg's output after plugging in the stick, or better yet, ls -l /dev/disk/by-id.

Once you are certain you have the correct device name, use the cp command to copy the image to the stick. This will definitely overwrite any previous contents on your stick!

$ cp live-image-i386.hybrid.iso ${USBSTICK}
$ sync

Note: The sync command is useful to ensure that all the data, which is stored in memory by the kernel while copying the image, is written to the USB stick.

4.5.3 Wykorzystanie przestrzeni pozostałej na nośniku USB

After copying the live-image-i386.hybrid.iso to a USB stick, the first partition on the device will be filled up by the live system. To use the remaining free space, use a partitioning tool such as gparted or parted to create a new partition on the stick.

# gparted ${USBSTICK}

After the partition is created, where ${PARTITION} is the name of the partition, such as /dev/sdb2, you have to create a filesystem on it. One possible choice would be ext4.

# mkfs.ext4 ${PARTITION}

Note: If you want to use the extra space with Windows, apparently that OS cannot normally access any partitions but the first. Some solutions to this problem have been discussed on our mailing list, but it seems there are no easy answers.

Remember: Every time you install a new live-image-i386.hybrid.iso on the stick, all data on the stick will be lost because the partition table is overwritten by the contents of the image, so back up your extra partition first to restore again after updating the live image.

4.5.4 Uruchamianie nośnika live

The first time you boot your live medium, whether CD, DVD, USB key, or PXE boot, some setup in your computer's BIOS may be needed first. Since BIOSes vary greatly in features and key bindings, we cannot get into the topic in depth here. Some BIOSes provide a key to bring up a menu of boot devices at boot time, which is the easiest way if it is available on your system. Otherwise, you need to enter the BIOS configuration menu and change the boot order to place the boot device for the live system before your normal boot device.

Once you've booted the medium, you are presented with a boot menu. If you just press enter here, the system will boot using the default entry, Live and default options. For more information about boot options, see the "help" entry in the menu and also the live-boot and live-config man pages found within the live system.

Assuming you've selected Live and booted a default desktop live image, after the boot messages scroll by, you should be automatically logged into the user account and see a desktop, ready to use. If you have booted a console-only image, such as a standard flavour prebuilt image, you should be automatically logged in on the console to the user account and see a shell prompt, ready to use.

4.6 Używanie wirtualnej maszyny do testowania

It can be a great time-saver for the development of live images to run them in a virtual machine (VM). This is not without its caveats:

Provided you can work within these constraints, survey the available VM software and choose one that is suitable for your needs.

4.6.1 Testowanie obrazu ISO z użyciem QEMU

The most versatile VM in Debian is QEMU. If your processor has hardware support for virtualization, use the qemu-kvm package; the qemu-kvm package description briefly lists the requirements.

First, install qemu-kvm if your processor supports it. If not, install qemu, in which case the program name is qemu instead of kvm in the following examples. The qemu-utils package is also valuable for creating virtual disk images with qemu-img.

# apt-get install qemu-kvm qemu-utils

Uruchamianie obrazu ISO jest proste:

$ kvm -cdrom live-image-i386.hybrid.iso

Zobacz podręczniki man, aby uzyskać więcej szczegółów.

4.6.2 Testowanie obrazu ISO z użyciem VirtualBox'a

W celu przetestowania ISO w VirtualBox' ie:

# apt-get install virtualbox virtualbox-qt virtualbox-dkms
$ virtualbox

Create a new virtual machine, change the storage settings to use live-image-i386.hybrid.iso as the CD/DVD device, and start the machine.

Note: For live systems containing X.org that you want to test with virtualbox, you may wish to include the VirtualBox X.org driver package, virtualbox-guest-dkms and virtualbox-guest-x11, in your live-build configuration. Otherwise, the resolution is limited to 800x600.

$ echo "virtualbox-guest-dkms virtualbox-guest-x11" >> config/package-lists/my.list.chroot

In order to make the dkms package work, also the kernel headers for the kernel flavour used in your image need to be installed. Instead of manually listing the correct linux-headers package in above created package list, the selection of the right package can be done automatically by live-build.

  $ lb config --linux-packages "linux-image linux-headers"

4.7 Budowanie i używanie obrazu HDD

Building an HDD image is similar to an ISO hybrid one in all respects except you specify -b hdd and the resulting filename is live-image-i386.img which cannot be burnt to optical media. It is suitable for booting from USB sticks, USB hard drives, and various other portable storage devices. Normally, an ISO hybrid image can be used for this purpose instead, but if you have a BIOS which does not handle hybrid images properly, you need an HDD image.

Note: if you created an ISO hybrid image with the previous example, you will need to clean up your working directory with the lb clean command (see The lb clean command):

# lb clean --binary

Run the lb config command as before, except this time specifying the HDD image type:

$ lb config -b hdd

A teraz zbuduj obraz używając polecenia lb build:

# lb build

When the build finishes, a live-image-i386.img file should be present in the current directory.

The generated binary image contains a VFAT partition and the syslinux bootloader, ready to be directly written on a USB device. Once again, using an HDD image is just like using an ISO hybrid one on USB. Follow the instructions in Using an ISO hybrid live image, except use the filename live-image-i386.img instead of live-image-i386.hybrid.iso.

Likewise, to test an HDD image with Qemu, install qemu as described above in Testing an ISO image with QEMU. Then run kvm or qemu, depending on which version your host system needs, specifying live-image-i386.img as the first hard drive.

$ kvm -hda live-image-i386.img

4.8 Budowanie obrazu netboot

The following sequence of commands will create a basic netboot image containing a default live system without X.org. It is suitable for booting over the network.

Note: if you performed any previous examples, you will need to clean up your working directory with the lb clean command:

# lb clean

In this specific case, a lb clean --binary would not be enough to clean up the necessary stages. The cause for this is that in netboot setups, a different initramfs configuration needs to be used which live-build performs automatically when building netboot images. Since the initramfs creation belongs to the chroot stage, switching to netboot in an existing build directory means to rebuild the chroot stage too. Therefore, lb clean (which will remove the chroot stage, too) needs to be used.

Run the lb config command as follows to configure your image for netbooting:

$ lb config -b netboot --net-root-path "/srv/debian-live" --net-root-server "192.168.0.2"

In contrast with the ISO and HDD images, netbooting does not, itself, serve the filesystem image to the client, so the files must be served via NFS. Different network filesystems can be chosen through lb config. The --net-root-path and --net-root-server options specify the location and server, respectively, of the NFS server where the filesystem image will be located at boot time. Make sure these are set to suitable values for your network and server.

A teraz zbuduj obraz używając polecenia lb build:

# lb build

In a network boot, the client runs a small piece of software which usually resides on the EPROM of the Ethernet card. This program sends a DHCP request to get an IP address and information about what to do next. Typically, the next step is getting a higher level bootloader via the TFTP protocol. That could be pxelinux, GRUB, or even boot directly to an operating system like Linux.

For example, if you unpack the generated live-image-i386.netboot.tar archive in the /srv/debian-live directory, you'll find the filesystem image in live/filesystem.squashfs and the kernel, initrd and pxelinux bootloader in tftpboot/.

We must now configure three services on the server to enable netbooting: the DHCP server, the TFTP server and the NFS server.

4.8.1 Serwer DHCP

We must configure our network's DHCP server to be sure to give an IP address to the netbooting client system, and to advertise the location of the PXE bootloader.

Here is an example for inspiration, written for the ISC DHCP server isc-dhcp-server in the /etc/dhcp/dhcpd.conf configuration file:

# /etc/dhcp/dhcpd.conf - configuration file for isc-dhcp-server

ddns-update-style none;

option domain-name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;

default-lease-time 600;
max-lease-time 7200;

log-facility local7;

subnet 192.168.0.0 netmask 255.255.255.0 {
   range 192.168.0.1 192.168.0.254;
   filename "pxelinux.0";
   next-server 192.168.0.2;
   option subnet-mask 255.255.255.0;
   option broadcast-address 192.168.0.255;
   option routers 192.168.0.1;
}

4.8.2 Serwer TFTP

This serves the kernel and initial ramdisk to the system at run time.

You should install the tftpd-hpa package. It can serve all files contained inside a root directory, usually /srv/tftp. To let it serve files inside /srv/debian-live/tftpboot, run as root the following command:

# dpkg-reconfigure -plow tftpd-hpa

and fill in the new tftp server directory when being asked about it.

4.8.3 Serwer NFS

Once the guest computer has downloaded and booted a Linux kernel and loaded its initrd, it will try to mount the Live filesystem image through a NFS server.

Musisz zainstalować pakiet nfs-kernel-server.

Then, make the filesystem image available through NFS by adding a line like the following to /etc/exports:

/srv/debian-live *(ro,async,no_root_squash,no_subtree_check)

and tell the NFS server about this new export with the following command:

# exportfs -rv

Setting up these three services can be a little tricky. You might need some patience to get all of them working together. For more information, see the syslinux wiki at ‹http://www.syslinux.org/wiki/index.php/PXELINUX› or the Debian Installer Manual's TFTP Net Booting section at ‹http://d-i.alioth.debian.org/manual/en.i386/ch04s05.html›. They might help, as their processes are very similar.

4.8.4 Netboot testing HowTo

Netboot image creation is made easy with live-build, but testing the images on physical machines can be really time consuming.

Aby ułatwić sobie życie możemy użyć wirtualizacji.

4.8.5 Qemu

Edytuj /etc/qemu-ifup:

#!/bin/sh
sudo -p "Password for $0:" /sbin/ifconfig $1 172.20.0.1
echo "Executing /etc/qemu-ifup"
echo "Bringing up $1 for bridged mode..."
sudo /sbin/ifconfig $1 0.0.0.0 promisc up
echo "Adding $1 to br0..."
sudo /usr/sbin/brctl addif br0 $1
sleep 2

Zainstaluj, lub zbuduj grub-floppy-netboot.

Uruchom qemu z "-net nic,vlan=0 -net tap,vlan=0,ifname=tun0"

4.9 Webbooting

Webbooting is a convenient way of retrieving and booting live systems using the internet as a means. The requirements for webbooting are very few. On the one hand, you need a medium with a bootloader, an initial ramdisk and a kernel. On the other hand, a web server to store the squashfs files which contain the filesystem.

4.9.1 Getting the webboot files

As usual, you can build the images yourself or use the prebuilt files, which are available on the project's homepage at ‹http://live-systems.org/›. Using prebuilt images would be handy for doing initial testing until one can fine tune their own needs. If you have built a live image you will find the files needed for webbooting in the build directory under binary/live/. The files are called vmlinuz, initrd.img and filesystem.squashfs.

It is also possible to extract those files from an already existing iso image. In order to achieve that, loopback mount the image as follows:

# mount -o loop image.iso /mnt

The files are to be found under the live/ directory. In this specific case, it would be /mnt/live/. This method has the disadvantage that you need to be root to be able to mount the image. However, it has the advantage that it is easily scriptable and thus, easily automatized.

But undoubtedly, the easiest way of extracting the files from an iso image and uploading it to the web server at the same time, is using the midnight commander or mc. If you have the genisoimage package installed, the two-pane file manager allows you to browse the contents of an iso file in one pane and upload the files via ftp in the other pane. Even though this method requires manual work, it does not require root privileges.

4.9.2 Uruchamianie obrazów webboot

While some users will prefer virtualization to test webbooting, we refer to real hardware here to match the following possible use case which should only be considered as an example.

In order to boot a webboot image it is enough to have the components mentioned above, i.e. vmlinuz and initrd.img in a usb stick inside a directory named live/ and install syslinux as bootloader. Then boot from the usb stick and type fetch=URL/PATH/TO/FILE at the boot options. live-boot will retrieve the squashfs file and store it into ram. This way, it is possible to use the downloaded compressed filesystem as a regular live system. For example:

append boot=live components fetch=http://192.168.2.50/images/webboot/filesystem.squashfs

Use case: You have a web server in which you have stored two squashfs files, one which contains a full desktop, like for example gnome, and a standard one. If you need a graphical environment for one machine, you can plug your usb stick in and webboot the gnome image. If you need one of the tools included in the second type of image, perhaps for another machine, you can webboot the standard one.



<< previous toc next >>